GENERAL BACTERIOLOGY CHAPTER (2)

BACTERIA: THEIR STRUCTURE & ORGANIZATION

- Bacteria were first discovered by Leeuwenhoek 1674
- They are among the most widely distributed forms of life → they are found in air, water & soil → they are also found in or on the human body, animals & plants

Bacterial Morphology

Bacteria are differentiated into major categories, based on their morphological features such as:

Shape

🛿 Size

Our Arrangement

Staining characteristics

① Bacterial Size

Most bacteria range in size from 0.2-1.2 μm in width and 0.4-14 μm in length

②,③ Bacterial Shape & Arrangement 2 Bacilli ① Cocci ③ Spiral bacteria (singular: coccus) (singular: bacillus-stick) → Spherical organisms → Rod-shaped organisms Spirilla Diplococci These cells may occur Pairs of cells → e.g. Neisseria Singly, in Pairs or in Chains Rigid **Streptococci Spirochaetes** Some bacilli are short Chains of four or more Flexible (Coccobacilli) **Staphylococci** Others are curved Irregular grape-like clusters (Vibrios) Cocci Bacilli Others Diplococci Coccobacillus Diplobacil treptococc Streptobacill phylococo

The arrangement of cells is determined by the planes of division → For example, cocci that divide along a single plane produce diplococci or chains, e.g. streptococci → While those that divide on many planes produce clusters, e.g. staphylococci

④ Staining	g Characteristics
There are two kinds of	stains → simple & differential
③ Simple Stains	② Differential stains
Employ a single dye like methylene blue, crystal violet or fuchsin	Require more than one dye
Cells & structures stained with them	Distinguish between different types of bacteria by
give the same color	giving them different colors
	Gram's stain
	The most important differential stain in clinical
Therefore, they only reveal	microbiology \rightarrow it divides bacteria into:
	• Gram-positive (violet-staining)
the characteristics of	Gram-negative (red staining)
size, shape & arrangement	The second important stain is <mark>Ziehl-Neelsen stain</mark>
	the acid-fast bacilli of the genus Mycobacterium

Bacterial Ultra-Structures & their Functions

(Final details of subcellular structures are best revealed by electron microscopy)

- All bacteria: have nucleoid, ribosomes & cytoplasmic membrane
- Most bacteria: also have cell wall
- Some bacteria:

Are further enveloped by capsule or slime layer

Have also cytoplasmic inclusions & various appendages as flagella & pili

① Cytoplasm

Few morphologically distinct components can be found within the cytoplasm:

① Nucleoid:

- Genetic information of bacterial cell is contained in single circular molecule of double-stranded DNA,
 → which constitutes the bacterial chromosome
- It is 1 mm long and is packed into supercoiled state inside the cell

② Plasmids:

In many bacteria, additional genetic information is contained on plasmids -> which are small circular extra-chromosomal DNA molecules that can replicate independently of the chromosome

③ Ribosomes:

- They are the site of protein synthesis in the cell
- Ribosomes consist of protein & RNA
- Prokaryotic ribosomes have sedimentation constant of 70S → smaller than the 80S ribosomes of eukaryotes → this difference makes bacterial ribosomes a selective target for antibiotic action

④ Inclusion granules:

- These are granules of nutrient materials -> usually phosphates, sulphur, carbohydrates & lipids
- Energy reserves are usually stored as glycogen, starch or poly-β-hydroxybutyrate
- Phosphate is stored in metachromatic or volutin granules → which are used for synthesis of ATP

5 Mesosomes:

- These are complex invagination of the cytoplasmic membrane
- They are involved in cell division & sporulation
- They also have function analogous to the mitochondria in eukaryotes → providing a membranous support for respiratory enzymes

② Cytoplasmic Membrane

- In bacteria, as in other cells, the protoplast is limited externally by thin elastic cytoplasmic membrane
- It is phospholipid protein bilayer similar to that of eukaryotic cells → except that, in bacteria, it lacks sterols

It has the following functions:

O Selective transport: in bacteria, molecules move across the cytoplasmic membrane by:

Simple diffusionFacilitated diffusionActive transport

⁽²⁾ Excretion of extracellular enzymes:

<u>① Hydrolytic enzymes:</u> → which digest large food molecules into subunits small enough to penetrate the cytoplasmic membrane

② Enzymes used to destroy harmful chemicals: → such as antibiotics, e.g. penicillin-degrading enzymes

Faculty of Medicine

③ Respiration: -

→ The respiratory enzymes are located in the cytoplasmic membrane

→ Which is thus functional analogue of the mitochondria in eukaryotes

3 Cell wall biosynthesis: \rightarrow the cytoplasmic membrane is the site of:

• The enzymes of cell wall biosynthesis

2 The carrier lipids on which the subunits of the cell wall are assembled

③ Reproduction:

• Specific protein in the membrane attaches to DNA & separates duplicated chromosomes from each other

O Septum forms by cytoplasmic membrane to separate the cytoplasm of the two daughter cells

6 Chemotactic system:

Attractants & repellants bind to specific receptors in the cytoplasmic membrane \rightarrow and send signals to the cell's interior \rightarrow cell then responds to the surface message

③ Cell Wall

- The bacterial cell wall is the structure that immediately surrounds the cytoplasmic membrane
- It is **10-25 nm** thick
- Strong & relatively rigid → though having some elasticity

Structure of the cell wall:

- * The cell wall of bacteria is a complex structure
- * Its impressive strength is primarily due to peptidoglycan (PG), (murein or mucopeptide)
- * Peptidoglycan is complex polymer consisting of N-acetylglucosamine (NAG) & N-acetylmuramic acid (NAM) unique to bacteria → set of identical tetra-peptide side chains are attached to NAM
- * Besides PG, additional components in the cell wall divide bacteria into Gram +ve & Gram -ve:

General microbiology	Genera	I Mic	roB	iol	ogy
----------------------	--------	-------	-----	-----	-----

Faculty of Medicine

3		· · · · · · · · · · · · · · · · · · ·
	O Gram-positive cell wall	② Gram-negative cell wall
	• There are as many as 40 sheets of	• It is much thinner
Peptidoglycan	peptidoglycan → comprising up to 50% of the cell wall material	 Composed of only one or two sheets → comprising 5-10% of the cell wall material
	 Despite the thickness of 	
	peptidoglycan, chemicals can readily pass through	
	 Polymer of ribitol or glycerol phosphate 	
<u>Teichoic acids</u>	 They are found in cell wall of most Gram-positive bacteria 	Not present
	• Teichoic acids & cell wall associated proteins are major surface antigens	
	of Gram +ve bacteria	
		 Phospholipid protein bilayer present external to the peptidoglycan layer
<u>Outer</u> membrane	Not present	 Outer surface of lipid bilayer is composed of molecules of lipopolysaccharide (LPS) → which consists of complex lipid called lipid A chemically linked to polysaccharides Lipid A of the LPS → forms the endotoxin of the Gram-negative bacteria
		Polysaccharides are the outermost molecules of the cell wall & are major surface antigens of Gram -ve bacterial cell (somatic or O antigen)
		Space between cytoplasmic & outer membranes
Periplasmic	Not present	• It contains:
space	•	Peptidoglycan layer
:		ei-like solution of proteins

Functions of the cell wall:

- **1** Maintains the **characteristic shape** of the bacterium
- **O** Supports the weak cytoplasmic membrane against high internal osmotic pressure of protoplasm (5-25 atm.)
- Plays an important role in cell division
- Responsible for the staining affinity of the organism

Wall deficient variants:

① Mycoplasma

- The only group of bacteria that exists naturally without cell wall
- Because they lack a rigid cell wall:
 - Mycoplasmas do not assume a defined recognizable shape
 - **2** These organisms are **naturally resistant to cell wall inhibitors** (as penicillins & cephalosporins)

- They are wall defective or wall deficient bacteria
- "L" stands for Lister Institute in London → where they were first discovered
- L-forms may develop from cells that normally possess cell wall → when they are exposed to hydrolysis by lysozyme or by blocking peptidoglycan biosynthesis with antibiotics (such as penicillin)
 → provided that they are present in isotonic medium
- Some L. forms resynthesize their walls once the inducing stimulus is removed → their reversion to the walled state can produce relapses of overt infection
- Others, however, permanently lose the capacity to produce cell wall
- L. forms may survive antibiotic therapy

④ Capsule & Related Structures

- Many bacteria synthesize large amount of **extracellular polymer** that **collects outside the cell wall** to form **additional surface layer** → this layer is **formed only inside the host (in-vivo**)
- With one known exception (the polypeptide capsule of *Bacillus anthracis*), the extracellular material is made of polysaccharides

	Capsule	② Glycocalyx	③ Slime layer
<u>Structure</u>	Layer that adheres to cell surface & forms well-defined halo when differentially stained, to be resolved with L/M	Loose meshwork of polysaccharide-fibrils extending outwards from the cell	Surface layer that is loosely distributed around the cell
	 ● Protects bacterial cell from phagocytosis → hence, the capsule is considered important virulence factor 		
<u>Functions</u>	 Ø Some bacteria attach to target surfaction capsules or glycocalyx in order to est → For instance, Streptococcus mutans with which the bacteria stick to the 		
	● Protects the cell wall against va → e.g. bacteriophages, colic	e rial agents ymes	

⑤ Appendages

- Several structures project through the cell wall of bacteria to form surface appendages
- The most commonly observed are flagella & pili

	① Flagella	Pill or fimbriae (singular: pilus)
<u>Diameter</u>	Only 20 nm in diameter → too small to be detected by light microscope → they can be demonstrated clearly with the electron microscope	Shorter & thinner than flagella → can be observed only by the electron microscope
<u>Structure</u>	Flagella consist of protein called flagellin → which differs in different bacterial species → the flagellins are highly antigenic (H antigen)	Protein tubes that extend from the cells → they are composed of protein subunits termed pilins
Location & number	Location & number of flagella on a cell vary according to bacterial species → Organisms may be: Monotrichous (single polar flagellum), Cophotrichous (multiple polar flagella), Peritrichous (flagella distributed over the entire cell surface) Monotrichous (flagella distributed over the entire cell surface)	Short pili (fimbriae) → distributed over the entire cell surface
	Many bacteria move by means of flagella → Motile bacteria migrate towards regions where there is higher concentration of nutrients & solutes (process known as chemotaxis) & away from disinfecting substances (negative chemotaxis)	 ● Adherence * It is the function of the short pili (fimbriae) that occur in great numbers around the cell * They enable bacteria to attach to the surfaces → thus contributing
<u>Functions</u>	Axial filaments • Structurally & chemically, fibres of axial filaments are similar to flagella & they are sometimes called "endoflagella" • Spirochaetes move by means of these axial filaments	to the establishment of infection → virulence factor * For example, <i>N. gonorrhoeae</i> , withstands the flushing action of urine by adhering to urethral mucosa
	 These structures are composed of two groups of fibres that originate within the opposite ends of the cell and overlap in the middle → when the cell moves, it rotates around its longitudinal axis & flexes & bends along its length 	Conjugation Special long pilus called sex pilus (F pilus) is involved in transfer of DNA between bacteria → process known as conjugation

Bacterial Spores (Endospores)

Some bacteria (*Bacillus* & *Clostridium*) develop highly resistant resting phase or endospore that does not grow or reproduce, & exhibits absolute dormancy

Sporulation	Germination
Single vegetative bacterium forms single spore by a process called sporulation	Single vegetative bacterium emerges from a spore during germination
 Sporulation is triggered by unfavourable environmental conditions: Depletion of nutrients Accumulation of metabolites Changes in the growth requirements (e.g. temperature, pH, or oxygen tension) 	Endospores respond quickly to environmental changes returning to vegetative state within 15 min.
 Cytoplasmic membrane invaginates enclosing section of cytoplasm that contains: Bacterial chromosome Some ribosomes Other cytoplasmic materials that will be needed for germination 	 In the process of germination: Spores absorb water & swell The protective coat disintegrates
 It acquires thick cortex & thin but tough outer spore coat 	→ single vegetative cell emerges

Viability & resistance:

- Spores are much more resistant to disinfectants, drying and heating
- Moist heat at 121°C for 10-20 minutes is needed to kill spores → while 60°C is sufficient to kill vegetative forms
- Marked resistance of the spores has been attributed to several factors:
 - O Thermal resistance is provided by their high content of Ca²⁺ & dipicolinic acid (compound unique to endospores)
 - **2** The impermeability of their cortex & outer coat
 - **O** Their low content of water
 - **1** Their very low metabolic & enzymatic activity

Morphology:

Staining:

- Using Gram's stain, the **spore remains uncoloured** \rightarrow can be seen as **clear area within stained cell**
- The spores can be stained using special procedures

The shape: the spores may be oval or rounded

The position: in relation to the body of bacillus \rightarrow the spore may be central, terminal or subterminal

Position & shape of spores are characteristic of the species & may help in microscopic identification of the bacterium

Faculty of Medicine

	Test Yourself				
1) The following are functions of t	he cytoplasmic membrane EXCEPT:				
a- Respiration	b- Cell wall biosynthesis				
c- Reproduction	d- Staining affinity	e- Selective transport			
2) Lipid A is a cell wall component	<u>of:</u>				
a- Gram positive bacteria	b- Gram negative bacteria				
c- Fungi	d- Algae	e- Viruses			
3) One of the following is a function	on of the cell wall:				
a- Maintaining the characteris	stic shape of the bacterial cell				
b- Selective transport					
c- Respiration, since respirato	ry enzymes are located in it				
d- Protein synthesis					
e- Excretion of extracellular e	nzymes				
4) All the following are characters	of L-forms of bacteria EXCEPT:				
a- They are naturally occurring	g bacteria without cell wall				
b- They are resistant to antibi	b- They are resistant to antibiotics which inhibit cell wall synthesis				
c- They develop only in isotonic media					
d- They can produce relapses	of overt infection				
e- They may resynthesize the	cell wall				
5) Bacteria are protected from pha	agocytosis by:				
a- The capsule	b- Lipoprotein				
c- The mesosome	d- The outer membrane	e- Peptidoglycan			
6) All of the following are true con	cerning pili EXCEPT:				
a- They mediate bacterial adh	erence				
 b- They may be involved in bacterial conjugation 					
c- Their antigen is called H antigen					
d- They are important virulence factors					
e- They are protein in nature					
7) The marked resistance of the sp	ores can be attributed to all the follo	owing factors EXCEPT:			
a- The impermeability of their	cortex and outer coat				
b- Their ability to resist phago	cytosis				
c- Their low content of water					
d- Their very low metabolic ar	nd enzymatic activity				

e- Their high content of Ca²⁺ & dipicolinic acid

Faculty of Medicine

LECTURE EXTRAS

Cell Arrangement		Bacterial Structures		
Coocus Division in plane Division in plane Division in plane Division in plane (Diplocacci) (Chain)	Nelsseria Streptococcus	Bacterial Coats	Cytoplasmic structures	External Appendages
invo planes (0000000		Capsule	Nucleoid material	Flagella
Division in three places (Tetrad)	Sarcina	Cell wall	Ribosome	Pili (Fimberia)
(Cluster)	Staphylococcus	Cell membrane	Inclusion granules	

KA

2-Ribosomes:

- · They are the site of protein synthesis in the cell.
- Ribosomes consist of protein and RNA.
- Prokaryotic ribosomes have sedimentation constant of 70S, smaller than the 80S ribosomes of eukaryotes (S stands for Svedberg unit, a measure of size).
- This difference makes bacterial ribosomes a selective target for antibiotic action.

Functions of the cell wall

- 1. It maintains the characteristic **shape** of the bacterium.
- 2. It supports the weak cytoplasmic membrane against the high internal osmotic pressure (5-25 atm).
- 3. It is responsible for the staining affinity of the organism.
- 4. It plays an important role in cell division.

Wall deficient variants (Bacteria without cell wall)

Mycoplasma	"L" Forms	
Naturally present	Artificially induced	
Can replicate	Can't replicate	
Can't reassume a walled form	May (or may not) reassume the walled form upon removal of the causative agents.	

Have no a defined recognizable shape.
 Not stained by gram stain.

Faculty of Medicine

Comparis	on between flagell	a and pili		Capsule	Spore
	Flagella	Pili	Site of	Invivo (inside the host)	Invitro (in the environment
Morphology	Tall, thin & tubular	Short thin & tubular	formation		
Composition	Flagellin protein	Pillin protein	Metabolic activity and replication	MetabolicThe organism is activectivity and eplicationand can replicate	The organism is inactive and can't replicate
Antigenicity	Antigenic	Not antigenic			
Functions	Motility of the organism	-Attachment to the host - Gene transfer by conjugation	Functions	Adhesion to the host, protection and antiphagocytic	Protection from bad conditions of the environment

