CHAPTER (4)

BACTERIAL VIRUSES (BACTERIOPHAGES)

Definition:

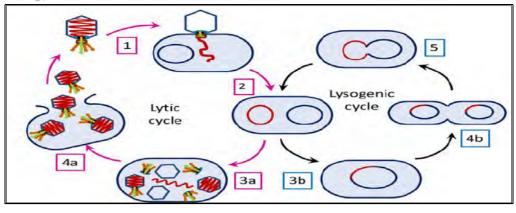
Bacteriophages (or phages) are **viruses that parasitize bacteria** → bacterial cell serves as host for virus

Morphology of the Bacteriophage: $ightarrow rac{\mathrm{in most cases, the bacteriophage consists of:}}$

① Head	🖉 Tail	Head ——	
Containing:	<u>Consists of:</u>		
Nucleic acid core	Hollow core		DNA
(usually DNA, rarely RNA)	Ourrounded by contractile sheath	Sheath —	
Surrounded by protein coat (capsid)	Which ends in base plate	Tail Fiber —	Base Plate
	To which tail fibers are attached	Ø	

Replication (Propagation) of Bacteriophages: \rightarrow Two cycles for phage replication are known:

① Lytic (vegetative) cycle


- It is so-called → because it ends in lysis of bacterial host cell & release of newly formed phages
- The stages of this cycle are:

Adsorption:	 * Phage attaches, by its tail, to specific receptors on the bacterial cell * Specificity of this process determines susceptibility of bacteria to different phages 	
Penetration:	 * Tail sheath contracts & nucleic acid is injected into the cell * Empty head & tail are left outside the cell 	
③ Eclipse phase:	 * In which no phage components are detected inside the cell * It takes short time (minutes to hours) → during which viral nucleic acid directs host cell metabolism to synthesize enzymes & proteins required for phage synthesis 	
Intracellular synthesis:	 * Of phage nucleic acids, capsids & tails * Several hundreds of phage components are synthesized 	
S Assembly:	Phage components aggregate to form complete phage particles → which mature into typical infectious phages	
6 Release:	Bacterial cell bursts liberating large number of phage particles to infect new cells	

N.B. During lytic phage cycle, fragments of bacterial DNA may be incorporated into phage head → phage can then transfer the incorporated bacterial DNA into another bacterial host → "generalized transduction" (Chapter 6)

General MicroBiology

Faculty of Medicine

② Temperate (lysogenic) cycle

- In this cycle, phage (temperate phage) does not replicate & lyse bacteria → but phage DNA becomes integrated with bacterial chromosome & divides with it to pass into daughter cells
- Integrated phage genome is called "prophage" & bacteria carrying it are called "lysogenic bacteria"

Presence of prophage in bacterium renders it:

Immune to infection	မ Lysogenic
By another phage	* Bacterium acquires new properties → e.g. diphtheria bacilli can produce toxin only when lysogenized
	 ★ Acquisition of new character coded for by prophage DNA is called "lysogenic conversion" or "phage conversion" → When phage is lost from the bacterium, this new character is lost

Outcome of temperate cycle:

0	0	8	
Prophage may be	* Prophage may be	* During process of induction,	
carried inside bacterial	induced to detach from	prophage may carry with it few genes	
cell indefinitely	bacterial chromosome	of bacterial chromosome	
passing to daughter cells	& start lytic cycle	* When it infects another bacterium,	
	* Induction may be:	it passes this fragment to it	
	① Spontaneous, or	giving it new characters	
	② Achieved by inducer	* This is known as "specialized transduction"	
	e.g. U.V. light	(Chapter 6)	

Practical Uses of Bacteriophages:

- Phages are used as cloning vectors in recombinant DNA technology → they carry & introduce foreign DNA fragments into a host cell
- Phages are used as research elements in some biological & genetic studies

Phage typing:

- Since **bacteria differ in their sensitivity to different phages** → phages are used to **identify & type** strains of **bacteria** that are biochemically & antigenically **indistinguishable**
- This phage typing is **important in epidemiologic studies** → e.g. to **trace source of infection in outbreaks** of **post-operative wound sepsis** caused by *Staphylococcus aureus*

Test Yourself

1) In lytic cycle of bacteriophages, all the following occur EXCEPT:

- a- Lysis of the bacterial host cell & release of newly formed phages
- b- The tail sheath contracts & nucleic acid is injected into the cell
- c- The phage attaches by its tail to a specific receptor
- d- The prophage is carried inside the bacterial cell indefinitely passing to daughter cells
- e- The phage components aggregate to form complete phage particles

2) The lysogenic bacterial cell is the cell containing:

- a- Lysosomes
- b- Lysozymes
- c- Bacteriocins
- d- Prophage
- e- Endospores