CHAPTER (5) BACTERIAL GENETICS

- Genetics is the science, which defines & analyzes heredity
- The unit of heredity is the gene → segment of DNA that carries information for specific biochemical or physiologic property
- The bacterial genome is the total set of genes present inside the bacterial cell → it comprises:

Bacterial chromosome	Additional genes may be carried on:	
Can encode up to 4000 separate genes	1. Plasmids	
necessary for bacterial growth & propagation	2. Transposable genetic elements	
	3. Bacteriophage DNA (prophage)	

① The Bacterial Chromosome

- Being prokaryote, the bacterial cell lacks nuclear membrane → instead, DNA is concentrated in the cytoplasm as nucleoid
- Nucleoid consists of síngle chromosome → circular, double-stranded, supercoiled DNA molecule associated at one point with mesosome → this attachment plays role in separation of two sister chromosomes following chromosomal replication
- The bacterial chromosome has the general chemical structure of DNA molecules:
 - Each strand is formed of regularly alternating **phosphate and sugar (deoxy-ribose) groups**
 - A nitrogenous base (A, G, C, or T) is attached to sugar group & is projecting inwards towards the other strand
 - The two strands are held together by hydrogen bonds between complementary bases (A-T) or (G-C) present at the same level
 - **1** The average length of bacterial chromosome is 4000-5000 Kbp
- Bacterial chromosome replicates by semi-conservative method of DNA replication → i.e: The two strands are separated → each strand acts as a template to synthesize complementary strand through the action of the polymerase enzyme
- Bacterial chromosome follows the same rules of gene expression & protein synthesis (i.e. transcription & translation) as higher organisms

② Plasmids

- Plasmids are extra-chromosomal, circular, double-stranded DNA molecules dispersed in cytoplasm
- They are much smaller than bacterial chromosome (1:50) → (from several to 100 Kbp)
- Plasmids are capable of replicating autonomously (independently of bacterial chromosome) → thus, multiple copies of the same plasmid may exist in the same cell → (plasmid copy number)

Faculty of Medicine

General MicroBiology

According to the copy number, plasmids can be categorized into 2 groups:

① Relaxed replicating plasmids	Ostringent plasmids
* Can replicate in absence of protein synthesis	Require protein synthesis
* Usually present in 30-50 copies/cell	* Present in few copies (1-5 copies/cell)
Relatively small in size	* Usually large

• Plasmids are generally dispensable -> this indicates that most plasmids encode properties that are not essential for growth, replication or survival of the host bacterium \rightarrow this is evidenced by:

O Spontaneous loss of plasmids during cell division

Plasmid curing:

→ experimental kicking off of plasmids using physical agents (e.g. heat) or chemical agents (e.g. antibiotics)

Functions (traits) exhibited by plasmids:

D Sex pilus formation:

Some plasmids carry fertility (F) factors \rightarrow that code for formation of sex pilus \rightarrow which mediates the process of conjugation \rightarrow for this reason, such plasmids are also known as conjugative plasmids

	Conjugative plasmids	Non-conjugative plasmids	
<u>Size</u>	Large	Usually small	
<u>Copy number</u>	1-5 → (stringent)	> 30 -> (relaxed)	
<u>F factors</u>	Present	Absent	
Sex pilus formation	Yes	No	
Transfer among Bacteria	By conjugation	By the help of conjugative plasmid	
Host bacteria Common in Gram -ve bacilli		Common in Gram +ve cocci	

2 Antibiotic resistance:

- Some plasmids carry genes for resistance (R-factors) to one or several antimicrobial drugs
- They often control the formation of enzymes capable of destroying the antimicrobial drugs \rightarrow e.g. **β-lactamase enzyme** which determines resistance to penicillin & cephalosporins
- R-factors are usually conjugative plasmids that can be transferred among bacteria by conjugation → this results in: **O** Rapid spread of drug-resistance among bacterial populations **O** Development of multiple drug-resistant bacterial strains

3 Virulence plasmids: may code for exotoxins, adhesins or invasion factors

④ Bacteriocin production:

- Bacteriocins are bactericidal substances produced by certain bacterial strains & are active against other strains of the same or closely related species
- e.g. colicin E1 produced by E.coli

3 Other functions: include:

- Nitrogen fixation
- Output Sugar fermentation
- H₂S production
- Resistance to heavy metals
- Output Antibiotic production
- O Degradation of aromatic compounds

Act as cloning vectors in recombinant DNA technology

General MicroBiology

Faculty of Medicine

③ Transposable Genetic Elements

- Extra-chromosomal, linear, single-stranded DNA \rightarrow smaller than bacterial chromosome
- These are non-replicating DNA segments (can't replicate autonomously)
- They are capable of:
 - **O** Inserting themselves into other DNA molecules
 - Mediating their own transfer from one location to another on the same chromosome or between chromosomes & plasmids
- Transposition occurs infrequently (once every 10⁵-10⁷ generations) → often in random pattern
- The insertion of transposable element into gene usually leads to inactivation (disruption) of that gene
- There are different classes of transposable genetic elements, for example:
 - Transposons → which encode specific genes (such as antibiotic resistance)
 - Pathogenicity islands (PAI)
- → which give the bacterium **variety of virulence characters**
- \rightarrow such as the ability to adhere to or invade host cells

④ Bacteriophage DNA

DNA of **temperate bacteriophage** that is **integrated in chromosome of lysogenic bacterial cell** (i.e. **prophage**) is considered as part of the genome of such bacteria (see chapter 4)

			self					
1)	1) Bacterial genetic information is carried on the following EXCEPT:							
-,	a- Ribosomes	b- Chromosor	ne	c- Transposons				
	d- Plasmids	e- Bacterioph	age DNA					
2)	<u>Plasmids:</u>							
	a- Are single-stranded DNA molecul	les	b- Carry optional ger	nes (are dispensable)				
	c- Carry genes essential for growth		d- Are always found	always found in linear form				
	e- Are always present as one copy/cell							
3)	Plasmids differ from transposable g	enetic element	ts, as plasmids:					
	a- Become inserted into chromosomes		b- Are self-replicating outside the chromosome					
	c- Move from chromosome to chroi	mosome	d- Carry genes for virulence (exotoxin production)					
	e- Carry genes for antibiotic resistar	nce						
4)	 Plasmids may code for any of the following EXCEPT: 							
	a- Sex pilus formation	b- Bacteriocir	production	c- Growth				
	d- Antibiotic resistance	e- Virulence						
5)	Conjugative plasmids:							
-	a- Are usually small in size		b- Carry fertility (F) fa	actor				
	c- Are relaxed plasmids		d- Have a large copy	number				
	e- Are common in Gram positive co	ссі	0 17					
	•							