CHAPTER (6) BACTERIAL VARIATION

• Bacterial variations are changes in bacterial characters

May be phenotypic or genotypic variations:

O Phenotypic variation	② Genotypic variation		
Occurs in response to	Occurs as a result of change in the underlying genetic constitution		
changes in environmental conditions			
without change in genetic constitution			
Reversible (transient)	Irreversible (permanent)		
Not-heritable	Heritable		
Examples:	It occurs through:		
L-forms of bacteria	• Mutation		
Loss of flagella	ene transfer:		
upon exposure to phenol	① Transformation ② Transduction ③ Conjugation		

① Mutation

It results from change in nucleotide sequence of DNA that may occur:

O Spontaneously as replication error (at rate of once every 10⁶ – 10⁷ cells), or

❷ Induced by radiation or chemical agents (at higher rate → once every 10³ – 10⁴ cells)

Mutation can be classified according to nucleotide substitution, insertion or deletion into:

① Single-base (point) mutations

Involve replacement (substitution) of single nucleotide in coding sequence \rightarrow this may result in:

① Same sense (silent) mutations:

Occur when the resulting base triplet (codon) codes for the same amino acid as the original triplet

② Mis-sense mutations:

★ Occur when the **mutant base changes the coding sequence** → so, **different amino acid is produced**

★ The resulting protein may be functioning or not → depending on the importance of the area affected by mutation

② Frame-shift mutations

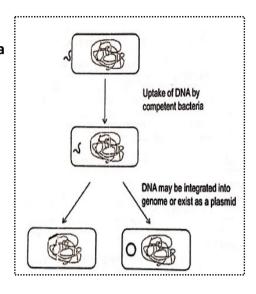
Occur when **nucleotide is inserted into**, or **deleted from the coding sequence** → resulting in **shift of the reading frame**, e.g. insertion of transposable element

> Induced mutations may be used to manipulate viral genomes for vaccine production & gene therapy

② Gene Transfer

There are 3 methods for gene transfer among bacteria:

① Transformation	② Transduction	③ Conjugation
Uptake of short fragments of	Transfer of DNA from	Transfer of DNA via sex pilus
naked DNA by naturally	one bacterium to another	& requires cell-to-cell contact
transformable bacteria	via bacteriophage	


① Transformation

- Dying bacteria release DNA which can be taken up by other bacteria
- Such DNA may be chromosomal or plasmid in origin, and may carry genes that "transform" the recipient bacterium
- The transforming DNA may become:
 Integrated with bacterial chromosome, or
 Re-established extra-chromosomally in the recipient cell
- Transformation depends on competence → ability of recipient bacterial cell to take up DNA
- Competence depends on presence of proteins in cell membrane that have special affinity to bind DNA & transport it into cytoplasm
- Artificial competence can be induced during recombinant DNA techniques by treating recipient bacteria with calcium chloride → which alters cell membrane permeability, enabling uptake of DNA

② Transduction

- Transfer of DNA from one cell to another by means of bacteriophage
- There are 2 types of transduction:

	① Generalized transduction	② Specialized transduction
	* During lytic phage cycle, bacterial DNA is	* It takes place when prophage
	fragmented & any fragment of DNA	contained in lysogenized bacterial
	(whether chromosomal or plasmid)	cell is induced to detach
	may be incorporated into phage head	
		* Such prophage may carry with
	* Phage particle can then transfer the	it the adjacent piece of
	incorporated bacterial DNA into	chromosomal DNA & transfer it to
	another bacterial host	another bacterial cell
Type of phage	Lytic (virulent) phage	Temperate (lysogenic) phage
Replication cycle	Lytic cycle	Lysogenic cycle
The transformed	Any nince of bactorial DNA	Specific piece of
The transferred DNA fragments	Any piece of bacterial DNA	chromosomal DNA → adjacent to
DivA inaginetits	DNA fragments (chromosomal or plasmid)	the site of insertion of prophage

General MicroBiology

Faculty of Medicine

③ Conjugation

- It is the most frequently observed mechanism of DNA transfer
- It involves 2 cell types:
 - Donors (F⁺) → which possess fertility (F) factor
 - ❷ Recipients (F⁻) → which lack (F) factor
- (F) factor carries genes for synthesis of sex pilus which acts as conjugation tube between donor & recipient bacterial cells
- The 2 DNA strands of (F) factor are then separated → & one strand is transferred from donor to recipient cell
- Each strand forms complementary strand → thus, the recipient cell acquires copy of (F) plasmid & becomes (F⁺) cell

1) Transformation in bacteria depends on:

- a- F factors
- b- R factors
- c- Bacteriophages
- d- Cosmids
- e- Competence of bacteria

2) One of the following requires cell to cell contact:

- a- Transformation
- b- Conjugation
- c- Transduction
- d- Transcription
- e- Transposition

3) Which of the following is mediated by a bacteriophage that carries host cell DNA:

- a- Transformation
- b- Conjugation
- c- Transduction
- d- Translation
- e- Transcription

4) Regarding generalized transduction:

- a- It occurs during lytic cycle of bacteriophage
- b- It occurs during lysogenic cycle of prophage
- c- Specific piece of bacterial DNA is transferred from one cell to another
- d- Sex pilus is necessary
- e- It results in phenotypic variation of bacterial character