CHAPTER (7)

ANTIMICROBIAL CHEMOTHERAPY

Definitions:

Antibiotics:

- Low-molecular weights antimicrobial substances that are produced as secondary metabolites by certain groups of microorganisms → especially Streptomyces, Bacillus & few moulds (Penicillium & Cephalosporium)
- Although their original source was microorganism → some antibiotics are currently made synthetically
 → chemical modification of certain antibiotics (to achieve the desired properties) is prominent method of new drug development (semi-synthetic antibiotics)

Antimicrobial chemotherapeutic agents:

Chemically synthesized substances that are used to treat infectious diseases → by **killing or inhibiting the growth (or multiplication) of microorganisms**

Bacteriostatic agent:

Antimicrobial agent that is capable of **inhibiting bacterial multiplication** → **multiplication resumes upon removal of the agent**

Bactericidal agent:

Antimicrobial agent that is **capable of killing bacteria** \rightarrow **multiplication can not be resumed**

Selective toxicity:

• Ability of antimicrobial agent to harm pathogen without harming the host

It may be due to:

- Specific receptor (or target) for the drug found in microbe but not in human body (e.g. peptidoglycan)
- **2** Inhibition of biochemical event essential for the organism but not for the host

Spectrum of activity:

Range of microorganisms that are affected by certain antibiotic is expressed as its spectrum of action

Description: De	② Narrow spectrum antibiotics	③ Limited spectrum antibiotics
Kill or inhibit the growth of	Effective mainly against	Effective against
wide range of Gram-positive <mark>&</mark>	either Gram-positive <mark>or</mark>	single organism or disease
Gram-negative bacteria	Gram-negative bacteria	

Mechanisms of Action of Antimicrobial Agents ① Inhibition of bacterial cell wall synthesis

• These antibiotics are bactericidal with minimal tissue toxicity

Agents acting by this mechanism include:

θ-lactam antibiotics	O Glycopeptides	• Cycloserine &
e.g. penicillins, cephalosporins & others	e.g. vancomycin & teicoplanin	bacitracin
β-lactam drugs inhibit		
last steps of peptidoglycan synthesis	On the other hand, Glycopeptide	s & Cycloserine
→ this inhibition is initiated by binding of	inhibit early steps in biosynthesis	of peptidoglycan
drug to certain cell receptors known as	→ which occur inside the cytopla	smic membrane
penicillin-binding proteins (PBPs)		
Therefore, mechanism of resistance to β-lactam antibiotics is different from that for other groups		

 \rightarrow So, vancomycin could be used successfully in infections caused by β -lactam resistant staphylococci

② Interference with the cell membrane function

- These agents are **microbicidal**
- They are highly toxic as they have narrow margin of selective toxicity
- These agents disrupt the cytoplasmic membrane & interfere with its function → these include:
 Anti-bacterial agents → e.g. polymyxin & colistin
 - **2** Anti-fungal agents \rightarrow e.g. amphotericin B, nystatin & imidazoles

③ Inhibition of bacterial protein synthesis

• Bacteria have 70S ribosomes (with 30S & 50S subunits)

Whereas mammalian cells have 80S ribosomes (40S & 60s subunits)

• Agents acting on 30s ribosomal subunit:

→ e.g. tetracycline & aminoglycosides (gentamicin, amikacin, streptomycin)

• Agents acting on 50S ribosomal subunit:

→ e.g. macrolides (erythromycin, azithromycin), lincomycins (clindamycin), streptogramins, linezolid, chloramphenicol & fusidic acid

Inhibition of bacterial nucleic acid synthesis

Inhibition of RNA synthesis:

→ through strong binding to DNA-dependent RNA polymerase → e.g. rifampin

- ❷ Inhibition of DNA synthesis: → through blocking DNA gyrase → e.g. quinolones & novobiocin
- **\Theta** Inhibition of folic acid synthesis: \rightarrow by competitive antagonism \rightarrow e.g. sulphonamides
 - For many organisms, para-amino benzoic acid (PABA) is essential for synthesis of folic acid
 - Sulphonamides are structural analogues of PABA → they compete with PABA for active center of the enzyme involved in folic acid synthesis → as a result, non-functional analogues of folic acid are formed and nucleic acid synthesis is inhibited
- Inhibition of dihydro-folic acid reductase leading to inhibition of active folic acid synthesis → the latter is important for purine synthesis and, consequently, nucleic acid formation
 - → examples of these antimicrobials include trimethoprim & pyrimethamine

1

This difference makes bacterial ribosomes a selective target for antimicrobials

Combined Therapy

- The ideal rule in antimicrobial therapy is mono-therapy → which means choosing one drug effective against particular organism
- However, there are conditions which necessitate the use of more than one antibiotic in order to achieve successful clinical response

Possible indications:

- **O** Severely ill patients suspected of having serious infections → e.g.:
 - ① Bacterial meningitis
 - ② Sepsis in immunocomoromised patients → caused by Pseudomonas aeruginosa, Klebsiella spp., Enterobacter spp. or Staph. Aureus
- Pebrile neutropaenia
- **③** To **delay** the **emergence of drug-resistant mutants** → e.g. in **treatment of T.B.**
- ④ To achieve bactericidal action through synergistic effect → e.g. in enterococcal endocarditis
- **\Theta** Mixed infections \rightarrow e.g. infections following massive trauma

O Synergistic effect	② Antagonistic effect	Indifference	Addition
→ (1 + 1 = > 2)	→ (1 + 1 = < 1)	→ (1 + 1 = 1)	→ (1 + 1 = 2)
The combined action is significantly greater than the sum of both effects	The combined action is less than that of the more effective agent when used alone	The combined action is no greater than that of the more effective agent when used alone	The combined action is equivalent to the sum of the actions of each drug when used alone
<u>e.g.:</u>	<u>e.g.:</u>	<u>e.g.:</u>	
• Vancomycin + gentamicin	Penicillin +	Cefepime + vancomycin	
→ in treatment of methicillin-resistant	chloramphenicol ➔ in treatment of	or	
staphylococci	meningitis	clindamycin +	
 Sulfamethoxazole + trimethoprim (cotrimoxazole) 		vancomycin	
→ in treatment of shigellosis			

Antimicrobial Chemoprophylaxis

 Chemoprophylaxis is administration of effective antimicrobial agent → to prevent rather than to treat infection with certain microbe → thus preventing development of a disease

• Examples:

• Preoperative in some surgical operations		
Penicillin or erythromycin	Given to individuals with abnormal heart valves prior to dental procedures	To prevent endocarditis
Every the second sec	Given to rheumatic patients	To prevent re-infection with S. pyogenes
Rifampicin	Given to close contacts of meningococcal meningitis for 2 days	To prevent meningitis

Resistance to Antimicrobial Agents

- Antibiotic resistance is **global problem faced today** in treatment of infectious diseases
- Resistance to antibiotics is more prevalent in hospitals → especially intensive care units due to higher antibiotic use

${\mathbb D}$ Intrinsic (inherent or natural) resistance	② Acquired resistance	
 This type of resistance refers to bacteria that are insensitive (in their natural state) to antibiotic without acquisition of resistance factors 	 It results from altered bacterial physiology & structure due to changes in genome of organism 	
<pre>* It is consistent & can be expected once the organism is known</pre>	 ★ It is inconsistent & unpredictable → unpredictable nature of this resistance is the 1ry reason why laboratory methods to detect resistance are necessary 	
* Intrinsic resistance occurs in the following	* Acquired resistance mechanisms are driven by	
situations:	two genetic processes in bacteria:	
O Streptomycetes are	Mutation and selection:	
protected from the antibiotics they produce	(sometimes referred to as vertical evolution):	
Gram -ve cell membrane has pores too small to allow large antibiotic molecules (nafcillin) to penetrate	 * Exposure of organism to antibiotic exerts selective pressure on organism & leads to mutation * The more frequent the exposure to antibiotic - 	
Organism lacks target or receptor for antibiotic	the greater the potential resistance	
→ as in case of resistance of	• Exchange of genes between strains & species:	
<i>Enterococcus</i> species to cephalosporins	<u>(sometimes called horizontal evolution):</u> Resistance genes can be encoded on plasmids, phages and transposable genetic elements → (see chapter 5)	

Mechanisms of acquired resistance: Bacteria have ability to use one or more of the following mechanisms:

 $\mathbb D$ Reduction of the intracellular concentration of the antibiotic: o by:

• **Decrease in influx of antibiotic:** \rightarrow through:

 $\ensuremath{\mathbbm O}$ Reduction of permeability of outer membrane by modification

⁽²⁾ Loss of porin (hollow membrane protein) required for entry of the antibiotic molecules

❷ Efflux pumps:

The antibiotic is **pumped out** across the cytoplasmic membrane **faster than it can diffuse in** → so the concentration of antibiotic remains too low to be effective

② Inactivation of the antibiotic: → e.g.:

- Production of β-lactamases leads to hydrolysis of the β-lactam ring → thus inactivating penicillins
 & cephalosporins
- ❷ Production of acetyl transferase → results in chloramphenicol resistance
- Production of aminoglycosides-modifying enzymes

Faculty of Medicine

③ Target modification:

Modification of the target site for the antibiotic \rightarrow results in reduced affinity for its receptor:

Modification of	Alteration of	O Alteration of
penicillin-binding proteins (PBPs)	<mark>50S ribosomal subunit</mark>	30S ribosomal subunit
→ Primary mode of resistance to	→ Reduces affinity of macrolides,	→ Reduces affinity of
β-lactam antibiotics in	linezolid & streptogramins	aminoglycosides
methicillin-resistant S. aureus (MRSA)	for the ribosome	for the ribosome

④ Target elimination: → by developing new metabolic pathways:

These bacteria have the ability to create new metabolic pathways that bypass the original target \rightarrow e.g. resistance to trimethoprim

③ Target overproduction:

May be mechanism used by S. aureus strains with intermediate susceptibility to vancomycin (VISA)

Complications of Chemotherapy

O Toxicity: → may be dose-dependent or independent → e.g.:

Output: Chloramphenicol	Aminoglycosides	Optimization Tetracycline	Streptomycin
→ Can cause		→ May cause	→ May affect
bone marrow	→ May cause nephrotoxicity	staining of teeth	8 th cranial nerve
depression		in infants	leading to vestibular dysfunction

② Allergy (hypersensitivity)	Isually not dose-dependent → e.g.:
------------------------------	------------------------------------

Penicillins	(Local application of sulphonamides	
May cause urticaria, anaphylactic sho		May result in contact dermatitis	

③ Emergence of resistant strains:

- Abuse of antibiotics (low dosage, interrupted course, no real indication & improper choice) encourages emergence of resistant mutants
- These mutants will overgrow and replace the originally susceptible bacteria
- It is recommended that in vitro susceptibility testing should be performed → to guide selection of anti-bacterial drugs

④ Super-infection:

Occurs as a result of **outgrowth of resistant members of normal flora** when **sensitive ones are eradicated during antibiotic therapy** \rightarrow e.g.:

Oral thrush	Pseudomembranous colitis
Caused by overgrowth of the yeast Candida	Caused by overgrowth of Clostridium difficile

Choice of Antimicrobial Agent for Therapy

The following are guidelines that can be followed for proper antibiotic use:

- Select antibiotic that is able to **penetrate to site of infection** and **achieve effective concentration** → e.g. certain drugs are able to pass **blood-brain barrier**, others are **highly concentrated in urine**
- ❷ Identify the nature of the infection → whether bacterial, viral, fungal, or parasitic
 → (Common mistake is to give anti-bacterial agent for viral infection)
- Choose as narrow antibiotic spectrum as you can
 - → When you get results of culture & susceptibility, revise your treatment to "narrow-down" the spectrum as far as possible
 - → Use of broad spectrum antibiotics is likely to:
 ① Faster induction of resistance to antibiotics
 ② May be complicated by super-infection
- Give the appropriate dose of antibiotic for proper duration
 → inadequate dosage or undue prolonged therapy may result in drug toxicity & antibiotic resistance
- **6** Know the **potential of the drug to produce toxicity**:
 - → Some drugs known to be of low toxicity → will exert high toxicity if they accumulate in blood due to liver or kidney dysfunction
 - → Use antibiotics that are only safe for pregnant and lactating women and for infants & children
- **O** Choose bactericidal rather than bacteriostatic antibiotics

Microbial Susceptibilities to Antimicrobial Agents

- Microorganisms vary in their susceptibility to different chemotherapeutic agents, and susceptibilities can change over time
- Ideally, appropriate antibiotic to treat any particular infection should be determined in vitro before any antibiotic is given
- In vivo activity of antimicrobial agent is not always the same as its in vitro susceptibility → because it involves many host factors that are not tested in vitro
- Activity of antimicrobial agent against organism is dependent on its concentration
- Some idea of the effectiveness of chemotherapeutic agent can be obtained from determining the minimal inhibitory concentration (MIC):
 - * MIC is defined as the lowest concentration of drug that prevents growth of test organism
 - * The MIC forms the basis for susceptibility & determining breakpoints
 - * Breakpoint of antimicrobial agent → concentration that can be achieved in serum with optimal dose
 Organisms with MICs at or below the breakpoint → are considered susceptible
 - ❷ On the other hand, organisms with **MICs above the breakpoint** → are **considered resistant**

• Routine in vitro susceptibility testing can be done by one of the following methods:

- Disc diffusion method
- ② Dilution method such as tube broth dilution
- Gradient diffusion (E test) method

Empiric Therapy

- The empiric therapy is a "best guess" procedure → based upon provisional diagnosis made by the physician that a patient has bacterial infection which requires treatment
- Depending on the type of infection
 - → There will be a **short list of bacteria** most likely to be **causing that infection**
 - → Depending on the type of bacteria
 - → There will be antibiotic most likely to successfully treat that infection
- "Best guess" treatment is not always successful or appropriate → as many bacteria have unpredictable susceptibilities to antimicrobial agents

Indications: ● In closed lesions → where there is no available sample

❷ In seriously ill patients → empiric therapy should be started without delay
 → (but after collecting specimens for culture)

	Test Yourself				
1)	1) Selective toxicity of an antibiotic:				
	 a- Depends on presence of a receptor for the drug in hosts not in organisms b- Is the ability of the drug to inhibit growth of a wide range of bacteria c- Depends on inhibition of a biochemical event essential for the host d- Is the ability of the drug to harm the organism without harming the host e- Is one of the complications of antibiotic therapy 				
2)	Which of the following antimicrobia	al agents is most toxic to humans?			
	a- Bacitracin d- Penicillin	b- Cephalosporin e- Vancomycin	c- Amphotericin B		
3)	One of the following antimicrobial	drugs is not among the group actin	g through inhibition of the		
	bacterial cell wall: a- Penicillin d- Bacitracin	b- Vancomycin e- Novobiocin	c- Cephalosporins		
4)	Which of the following ABs inhibits	bacterial protein synthesis by acting	g on 30S ribosomal subunit?		
	a- Vancomycin d- Aminoglycosides	b- Macrolides e- Chloramphenicol	c- Polymyxin		
5)	The following are mechanisms of a	cquired resistance to antimicrobial a	gents EXCEPT:		
	 a- Decreasing the influx of the antibiotic b- Modification of t e receptor (target) site c- Target over rod action d- Absence of cell wall e- Target elimination by developing new metabolic pathways 				
6)	The MIC is the:				
	 a- Highest concentration of a drug required to inhibit bacterial growth b- Standard dose a drug required to inhibit bacterial growth c- Lowest concentration of a drug required to inhibit bacterial growth d- Lowest dilution the a drug required to inhibit bacterial growth e- Maximum dose of a drug required to inhibit bacterial growth 				
7)	Combined ant biotic therapy is indi	cated in the following conditions EX	CEPT:		
	a- Mixed infections d- Endocarditis	b- T.B. e- Febrile neutropenia	c- Viral meningitis		
8)	Regarding the effect of combined the	herapy with antimicrobial drugs, the	expssion (1 + 1 = > 2) means:		
	a- Antagonistic effect d- Addition	b- Synergistic effect e- Ineffectiveness	c- Indifference		