CHAPTER (9) BACTERIAL PATHOGENESIS

Bacteria could be classified into:

① Saprophytic bacteria:

- Those which live freely in nature → on decaying organic matter, in soil or water
- They do not require a living host

② Parasitic bacteria:

- Those which live on or in a living host
- They are classified according to their relation to the host into:
 - Pathogenic: bacteria capable of causing disease
 - **One set and a set of the set of**
 - Opportunistic pathogens:
 - ★ These are potentially pathogenic bacteria → that do not cause disease under normal conditions but can cause disease in:
 - ① Immunocompromised patients, or
 - ⁽²⁾ When they find their way to another site other than their normal habitat
 - * Many of these opportunistic pathogens are originally commensals

Infection:

- Infection is a process by which the organism enters into relationship with the host
- Although microbial infections occur frequently, most infections end without occurrence of pathological changes and thus are not manifested as clinical disease → these infections are termed subclinical, silent or abortive infections
- Outcome of bacterial infections depends on mutual relationship between bacteria & host → depends on interaction between microbial factors (virulence) & host resistance factors (immunity)

Stages of the Infectious Process:

0 Source of infection: ightarrow which may be man (case or carrier), animal or soil

² Mode of transmission: → e.g. droplet inhalation, ingestion, injection, insects, contact & transplacental

- **③ Portal of entry:** \rightarrow e.g. respiratory tract, gastrointestinal tract, skin... etc \rightarrow the organism then starts to multiply within the host causing tissue damage (disease)
- Bertal of exit: → e.g. urine, stools, blood, respiratory or genital discharge → from which the organism is transmitted to a new host

Carriers

- Apparently healthy individual harbouring pathogenic organism, without having clinical manifestations, and can transmit this organism to others
- Carriers are more dangerous than cases as a source of infection → because they move freely among people without being detected
- According to the duration of the carriage state, carriers may be:
 ① Transient carriers → e.g. during the incubation period & early convalescence
 ② Chronic carriers → e.g. hepatitis-B virus
- Organism may be discharged from the carrier in intermittent or continuous manner

Conditions in which carriers play important role include:

- Enteric fever (gall bladder)
- Cholera (intestine)
- Epidemic cerebrospinal meningitis (nasopharynx)
- Oiphtheria (throat)
- G Hepatitis B virus infection (blood)
- **6** S. aureus carriage (skin and nose)

Pathogenicity

Qualitative description of a species of bacteria \rightarrow denoting ability to produce disease

Virulence

 Quantitative character (degree of pathogenicity) of strain belonging to pathogenic species
 Virulence is genetically determined by genes carried on plasmids, phages, pathogenicity islands & chromosomes

Virulence Factors of Bacteria:

a: Virulence factor is either structure (e.g. capsule) or product (e.g. toxins) that enables organism to cause disease

A- Adherence factors

- Enable bacteria to **attach to host surfaces** \rightarrow contributing to **establishment of infection** \rightarrow **For example:**
 - Fimbriae of Neisseria gonorrhoeae & E. coli → help attachment of these organisms to urinary tract epithelium
 - Glycocalyx of Staphylococcus epidermidis and certain viridans streptococci allows the organisms to adhere strongly to heart valves
- Mutants that lack these factors are often avirulent

B- Invasion factors

Invasion of tissue followed by **inflammation** is one of the **main mechanisms by which bacteria** can cause **disease** → **this invasion is helped by:**

① Enzymes:

- Immunoglobulin A protease → which degrades IgA
- **\Theta** Lecithinase \rightarrow that breaks down lecithin of cell membrane
- **③ Deoxyribonuclease** → that breaks down DNA
- ④ Collagenase & hyaluronidase → which degrade collagen & hyaluronic acid

ightarrow allow bacteria to spread through subcutaneous tissues

\Theta Leukocidin \rightarrow which can destroy both polymorphonuclear leucocytes & macrophages

② Anti-phagocytic factors:

- **O** Capsule \rightarrow prevents phagocytes from attachment to bacteria \rightarrow e.g. Strept. Pneumonia
- ② Cell wall proteins of Gram-positive cocci → such as:
 ③ M protein of Strept. pyogenes
 ② Protein A of Staph. Aureus
- **③** Coagulase → accelerates formation of fibrin clot from fibrinogen → this clot can protect bacteria from phagocytosis → e.g. *Staph. Aureus*

③ Toxin production:

- Toxin production is another mechanism by which bacteria can produce disease
- Bacterial toxins are either exotoxins or endotoxins

Faculty of Medicine

	Production -	F . J. L. L. L.
	<u>Exotoxins</u>	<u>Endotoxins</u>
<u>Source</u>	Secreted by living organisms	Integral part of the cell wall of
	both Gram-positive (mainly) &	Gram-negative organisms
	Gram-negative	→ liberated upon cell disintegration
<u>Nature</u>	Protein	Lipopolysaccharide (lipid A)
<u>Toxicity</u>	High	Low
Antigenicity	Highly antigenic	Poorly antigenic
<u>Heat stability</u>	Unstable to temp. above 60°C	Stable to temp. above 60°C
		for several hours
<u>Specificity</u>	Every toxin has specific action	Same generalized effect (non-specific action)
		→ all give fever & shock
Coding genes	Encoded by plasmids , bacteriophages,	Encoded by genes on Chromosome
	PAI or chromosomes	
<u>Examples</u>	Ol. tetani (plasmid)	E. coli & meningococcal Endotoxins
	C. diphtheriae (phage)	
	🕑 H. pylori (PAI)	
	B. pertussis (chromosome)	
Detoxification	Can be converted into toxoid*	Can not

* Treatment of exototoxin with formalin (or other agents) removes its toxicity & retains its antigenicity → converting it into toxoid, that can be used for immunization

_____<u>_</u>____

Koch's postulates:

These are criteria that were proposed by Koch in order to determine if the organism isolated from the patient actually caused the disease \rightarrow i.e. these criteria must be satisfied to confirm the causal role of organism \rightarrow these criteria are as follows:

- 1. The organism must be isolated from every patient with the disease
- 2. The organism must be isolated free from all other organisms and grown in pure culture in vitro

- 3. The pure organism must cause the disease in a healthy, susceptible animal
- 4. The organism must be recovered from the inoculated animal

Test Yourself			
1) Opportunistic pathogens:			
a- Are never the cause of a clinical infection	b- Are usually highly pathogenic		
c- Are rarely part of the normal flora	d- Are resistant to killing by steam sterilization		
e- Cause disease mainly in immunocompromised individuals			
2) Exotoxins have the following characters, EXCEPT:			
a- They may be encoded by genes on the chromoso	me b- They can be converted to toxoids		
c- They have specific action	d- They are polypeptides		
e- They are heat stable			
3) <u>Endotoxins:</u>			
a- Are secreted mainly by Gram-positive bacteria	b- Are highly antigenic		
c- Are stable at temperatures above 60°C	d- Can be converted into toxoid		
e- Have specific action			